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Summary. We present a model for predicting the temporal and 
spatial dependence of [Ca] in the cardiac subsarcolemmal diadic 
region (cleft), following Ca release from the "feet"  of the sarco- 
plasmic reticulum. This region is modeled as a disc 10 nm thick, 
430 nm in radius, with or without Ca binding sites and open at its 
periphery to the cytosol. [Ca] is computed for three diffusion coef- 
ficients (100, 20 and 4% of aqueous diffusion), following release of 
a 20-msec square pulse sufficient to produce 50% maximal contrac- 
tile force, or repetitive release (400/rain) of such pulses. Numerical 
solutions are obtained for the general diffusion/binding problem 
and analytic solutions for the case of no binding sites. For the mid- 
dle value of diffusion coefficient, and in the absence of binding 
sites, [Ca] rises to - 1.5 mM in 20-msec and then falls to -0.1 bLM in 
< 3 msec. Adding binding sites reduces peak [Ca] to -0 .6  mM but 
prolongs its decline, requiring -200 msec to reach 20 ~zM. For re- 
petitive release [Ca] is > 100 p~M for roughly half of each cycle. Two 
major implications of the predicted [Ca] are: (i) The effect of Ca 
binding sites on [Ca] will cause Ca efflux from the cleft via the Na- 
Ca exchanger (K,,,(Ca) ~ 20 txM) to continue at a significant level 
for > 200 msec. (ii) The time constant for inactivation of release 
from the "feet"  must be much greater than for activation if Ca- 
induced Ca release is to continue for > 1-2 msec. 

Key Words diffusion model �9 subsarcolemma/space �9 calcium 
diffusion . calcium exchange calcium binding �9 excitation- 
contraction coupling 

Introduction 

In the preceding paper (Post & Langer, 1992) 
the sarcolemmal calcium (Ca) binding sites of the 
cardiac cell were further characterized. There are 
two classes of sites: K d = 13 /J.M and 1.1 mM, 
with the low-affinity sites having 12 times the 
capacity of the high-affinity sites. It was shown 
that the low-affinity sites are phospholipid in nature 

* P r e s e n t  addres s :  Institute of Biomembranes, State Uni- 
versity Utrecht, 3584 CH Utrecht, The Netherlands. 

and are located in the sarcolemmal cytoplasmic 
leaflet. The Ca concentration in cardiac cells has 
been observed to vary from a diastolic level of 0.1 
~M to a systolic level of 5 tXM. If the low-affinity 
sites were in an environment with such Ca concen- 
trations, then the amount of Ca bound to the low- 
affinity sites would be very low. However, much 
higher Ca concentrations could exist in restricted 
compartments of the cell and go undetected by 
present techniques. A possible candidate for such 
a compartment would be the space ("cleft") be- 
tween the cytoplasmic leaflet of the sarcolemma 
and the junctional sarcoplasmic reticulum (SR), 
into which, upon excitation, the Ca is released 
from the SR "feet"  processes. Based upon data 
on SR Ca release, Ca diffusion, morphology of 
the cleft and sarcolemmal Ca binding sites, we 
constructed a mathematical model to calculate the 
Ca concentration in the cleft as a function of space 
and time. 

The Ca concentration profile in the cleft is first 
calculated in the absence of binding sites. This is 
done for three values of the calcium diffusion 
coefficient: D = 5 x 10 6 cm2/sec, representing 
the aqueous diffusion coefficient (Wang, 1953; 
Hodgkin & Keynes, 1957; Kushmerick & Podol- 
sky, 1969; Nasi & Tillotson, 1985), and 20 and 
4% of this value to span the range of diffusion 
coefficients reported within cells (Hodgkin & 
Keynes, 1957; Kushmerick & Podolsky, 1969; Nasi 
& Tillotson, 1985). Next, on the basis of previous 
work (Post et al., 1988; Post & Langer, 1992), we 
add the binding sites to the inner sarcolemmal 
leaflet with the density and with the K d values 
measured. Their effect on the Ca concentration 
profile in the cleft is analyzed for the condition in 
which the sites are homogeneously distributed over 
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Fig. 1. Geometry of the model. The restricted space is modeled 
as a cylinder of height h and radius a. In a cylindrical coordinate 
system (r, 0, z), the surface of the SR cistern is at z = 0 and is 
a circle of radius a = 430 nm. The inner sarcolemmal surface 
facing it is at z = h = 10 nm. The cylinder is open to the cytosol 
a t r  = a. 

the entire inner leaflet area. This is done with only 
the low-affinity (Kd = 1.1 mM) sites and with both 
low- and high-affinity (K a = 1.3 /XM) sites. We 
consider two time courses of Ca release. First, we 
consider a single square pulse of 20-msec duration, 
and then we consider a train of such pulses re- 
peated every  150 msec to simulate beating. 

The analysis demonstrates that the addition of 
sarcolemmal binding sites has a dramatic effect on 
the time dependence of the Ca concentrat ion tran- 
sient. With phospholipids containing the low-affinity 
sites homogeneously  distributed, the high-affinity 
sites also present  and D = 10 -6  cmZ/sec, the release 
of an amount  of  Ca at the " f e e t "  sufficient to pro- 
duce 50% maximal force results in a [Ca] averaged 
over  the restricted space which reaches a peak value 
of > 0.6 mM and requires 200 msec to fall to 20 
/XM. If  this profile represents the in vivo condition it 
would have significant physiological consequences 
for cellular Ca exchange. 

The Model 

Figure 1 illustrates the geometry of the "c l e f t "  
between the SR cistern and the inner sarcolemmal 
leaf le t - - the  region which is spanned by the " f ee t . "  
The surface of  the cistern facing the sarcolemma 
is modeled as a circular disc of  radius r = a = 
430 nm (Page, 1978) in the plane at z = 0. The 
inner sarcolemmal surface is modeled as a plane 
a distance of  10 nm from the SR plane, the approxi- 
mate height of  the feet (Wagenknecht,  1989), lo- 
cated at z = h = 10 nm. The Ca released via the 
feet into this space upon excitation is the amount 

calculated by Fabiato (1983) to produce 50% maxi- 
mum force,  8.8 x I0 20 mol//xm 3 cell water or 
2.76 x 10 -15 mol/cell (for a cell of 20 /xm x 
100 /zm dimension). The diadic junctions or cleft 
regions are calculated (Page, 1978) at approxi- 
mately 3.8 x 103/cell, and thus, the Ca released 
into each diadic region or cleft is 7.3 • I0-19 mol. 
We assume a release time of  20 msec (Feher  & 
Fabiato, 1990) and since the precise form of the 
release is unknown we assume a square pulse with 
Ca release at the rate of I = 3.65 x 10 -17 tool/ 
sec. The release is assumed to occur  uniformly 
throughout the volume of  the space as well as 
uniformly in time, since the spatial distribution of  
the Ca release also is not known. 

The outer boundary of the cleft at r = a is 
assumed to be open to the general intracellular space 
where the concentrat ion varies between a diastolic 
level of 10 -4 m M  and a systolic level as much as 50 
times higher. In the model, we assume the concen- 
tration as r = a is fixed at 10 -4  m M .  Taking into 
account the higher systolic level would raise the 
predicted [Ca] in the cleft. Its effect is not modeled 
because it would not significantly affect the pre- 
dicted [Ca] if the concentrat ion at r = a never  rose 
to levels comparable to the average value within the 
cleft. According to our results below, this appears 
to be the case. 

Initially, we consider the steady-state diffusion 
problem in which the SR release occurs  at a constant  
rate for all time. This is done to determine the maxi- 
mum [Ca] that can be expected within the cleft from 
our model for the three values of the diffusion coef- 
ficient. Next  we consider the transient problem with- 
out sarcolemmal binding sites. This shows the time 
required to reach maximum level after release com- 
mences and the time required to return to the dia- 
stolic level after release ceases. Both the steady- 
state problem and the transient problem without 
binding are solved analytically, the former  in terms 
of a parabola, the latter in terms of  an infinite sum 
of exponentials in time and zero-order  Bessel func- 
tions in space. 

We consider the transient problem with the two 
classes of the experimentally character ized binding 
sites following Michaelis-Menten relations. The re- 
sulting nonlinear diffusion equation is solved numer- 
ically by finite differences. Finally, we consider the 
response to repetitive excitation, with the SR release 
a train of square pulses. 

In the present model we do not include the oper- 
ation of  Ca transport  processes  such as N a - C a  ex- 
change and re-uptake of  Ca by the SR. These are 
considered to be systems which, if jux taposed  to the 
cleft, would respond to the [Ca] profile modeled 
here. The addition of these systems to the present  
model will be approached in the future. 
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STEADY-STATE PROBLEM 

In this section, we consider the steady-state prob- 
lem. We assume the Ca release at a rate of I = 
3.65 x 10 -17 mol/sec has been flowing for a suffi- 
cient time so that the Ca distribution has reached a 
steady state. 

We assume a uniform Ca current source s per 
unit volume of magnitude 

s = I / T r a 2 h .  (1) 

Because a = 43h > h, variations in the z-direction 
can be neglected. Because of the symmetry of the 
problem, the Ca flux will be in the radial direction 
(dependent on r, but independent of 0 and z). The 
radial Ca flux density J (mol/sec)/cm 2 at a distance 
r from the center of the cleft is 

J = 7 r r 2 h s / 2 7 r r h  = I r / 2 r r a 2 h .  (2) 

According to Fick's first law of diffusion, the Ca flux 
density is related to the Ca concentration by 

J = - D d c / d r  (3) 

1957; Kushmerick & Podolsky, 1969; Nasi & Tillot- 
son, 1985). The effective D in the cleft is almost 
certainly lower than this as a result of the obstruction 
to movement by the feet of the SR and other cyto- 
plasmic inclusions. The lowest experimental value 
that we have found in the literature is 1.4 x 10 -7 

cmZ/sec (Hodgkin & Keynes, 1957; Kushmerick & 
Podolsky, 1969; Nasi & Tillotson, 1985). We shall 
do the calculation here, and the subsequent compu- 
tations below, for the three values ofD = 5 x 10 -6 ,  

1 • 10 -6, and 2 x 10 -7 cm2/sec. Substituting in Eq. 
(7), we find that Cm = 0.29, 1.45 and 7.25 mM for the 
three values of D and the above values for I and h. 

Thus, the mean steady-state Ca concentration, 
Cm, in the cleft is increased from micromolar levels 
to millimolar. For the two lower values of D, it is in 
the range where significant binding by the low-affin- 
ity sites ( K  d = 1.1 mM) would occur. The high- 
affinity sites would be totally saturated. Note that 
increasing the boundary condition at r = a from 
10 -4 m M  to a value between 10 -4 and 5 x 10 -3 mM 
would affect % only at the third decimal place. We 
need not, therefore, be concerned about our lack of 
knowledge about its true value or its time depen- 
dence. 

where c(r)  is the Ca concentration at radial distance 
r and D is the diffusion coefficient. Combining Eqs. 
(2) and (3) yields 

d c / d r  = - I r / 2 r c a 2 h D .  (4) 

This may be integrated, using the boundary con- 
dition 

c ( a )  = c o (5) 

to obtain 

c(r )  = c o + ( I /4"rcDh)(1  - r 2 / a  2) (6) 

so that c(r )  has a parabolic distribution, with a peak 
value of Co + I / 4 r  at the center of the cleft and 
a mean value of 

cm = c ( r ) .  2 7 r r d r / r r a  2 = c o + I / S r r D h .  (7) 

Notice that Cm, written in Eq. (7) in terms of the total 
current I per cleft, is independent of the cleft ra- 
dius, a. 

The appropriate value of D in the cleft is not 
known so we shall use three values of D which prob- 
ably cover the range of possible values. In free solu- 
tion, measurements of D vary between 5 and 7 x 
10 -6 cm2/sec (Wang, 1953; Hodgkin & Keynes, 

TRANSIENT PROBLEM, No BINDING SITES 

We now consider the time-dependent problem, in 
order to determine the time required to reach the 
steady state (if, indeed, the steady state can be 
reached in less than the 20-msec release period), and 
also the time beyond the 20-msec duration of the SR 
release, during which the elevated concentrations 
are maintained. Initially, we solve the problem in 
the absence of binding sites, partly because we are 
able to get an analytic solution only in this special 
case but also as a basis for comparison with our 
results below which determine the effect of the addi- 
tion of sarcolemmal binding sites. 

Considering conservation of Ca ions within the 
infinitesimal volume element between radial dis- 
tance r and r + d r  during the time interval between 
t and t + d t ,  we obtain 

[2~'(r + d r ) h J ( r  + dr ,  t) - 2 7 r r h J ( r ,  t ) ]d t  

= [c(r,  t) - c ( r ,  t + d t )  + s d t ] 2 7 r r h d r .  (8) 

Taking the limit as d r  and d t  ~ 0, and using Eq. (1) 
for s, Eq. (8) becomes 

(1 / r )O( rJ ) /Or  = - O c / O t  + I / T r a 2 h .  (9) 

The left-hand side of Eq. (9) is the divergence of J 
in cylindrical coordinates with no z or 0 dependence. 
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Using Eq. (3) to eliminate J,  we obtain the diffusion 
equation 

(D/r)O(rOc/Or)/Or = Oc/Ot - I/1ra2h. (10a) 

This equat ion must  be solved subject to the initial 
condition 

c(r, O) = c o (lOb) 

that initially, at t = 0, the interior of  the cleft is 
equilibrated with the intracellular medium and the 
boundary  condition 

c(a, t) = c o (10c) 

that for all t ime the outer  cylindrical boundary  r = 
a of  the cleft is maintained at the intracellular value 
c o (assumed constant).  

The solution to the ini t ial /boundary-value prob- 
lem of Eqs.  (10a-c) is ( see  Appendix A) 

,[(r2) 
c(r, t) = co + ~ 1 -  ~5 

ex,,( ;2 Ot/a2~ J o ( J o S / a ) ]  - 8 2  
n=l  J0,n 1 0,n _1 

(11) 

where J0 and J1 are the zero- and first-order Bessel 
functions of  the first kind and J0,n is the n th root of  
the equat ion 

Jo(Jo,,) = 0 (12) 

which are tabulated (Abramowitz  & Stegun, 1964, 
p. 409, Table 9.5). The first two values are J0,~ = 
2.4048 . . . and J0,2 = 5.5201 . . . The first two 
terms in Eq. (11) are the s teady-state  solution of Eq. 
(6) and the third term, the infinite sum, is a sum 
of  exponentials  that decay to zero as t--~ ~. For  
sufficiently large t (t ~> aZ/ j2 jD)  the n = 1 term 
dominates  and the concentrat ion approaches  the 
s teady-state  values (0.29, 1.45 and 7.25 mM) with 
time constants  

"r = a2/j~,lD (13) 

which equal 0.064, 0.32 and 1.6 msec  for D = 5 x 
10 -6 ,  1 • 10 -6  and 2 x 10 -7  cmZ/sec, respectively.  

Note  that when t = 0, the square-bracketed term 
in Eq. (11) is zero so that the initial condition is 
satisfied. This implies that 1 --  r Z / a  2 = 8 ~'n=lJo,n~ . - 3  

Jo(Jo,,r/a)/Jl(Jo,~). Using the known integral (Abram- 
owitz & Stegun, 1964, p. 361, formula  9.1.30) 
frJo(o~r)dr = Jl(o~r)/a and averaging over  the volume 
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Fig. 2. Mean calcium concentrat ion versus time in the absence 
of binding sites. The calcium concentration,  averaged over  the 
volume of the restricted space, is plotted as a function of time for 
three values of the diffusion coefficient, D. Results are from Eq. 
(14) for 0 -< t -< 20 msec and from Eq. (17) for 20 msec -< t -< 500 
msec. 

of  the cleft, as in Eq. (7), the mean concentra t ion is 
found to be 

Cm(t ) = C 0 + ( I / 8 ~ D h )  

4 - -  J o , n  , �9 

n=l  
(14) 

Note  that the square-bracketed  express ion van- 
ishing at t 0 implies that . . . .  4 = En=lJ0,n - ~ .  Equat ion 
(14) is shown by the rising phase  of  the curves  in 
Fig. 2 for the three values of  D. 

To solve the prob lem after  the release is turned 
off, it is assumed that the initial condit ion (i.e., the 
condition at t = t o = 20 msec)  is the s teady-sta te  
distribution of Eq. (6) so that the ini t ial /boundary- 
value problem is 

(D/r)O(rOc/Or)/Or = Oc/Ot 

c(r, to) = Co + (I/47rDh)(1 - r2/a 2) 

c(a, t) = Co. 

(15a) 

(15b) 
(15c) 

The solution is ( see  Appendix  A). 

c(r, t) = co 

21 t Va  2~ Jo(Jo,,r/a) 
+ 7rDh ~'2'=1 e x p ( - j Z 0 D ( t  - o/ , 

JO,ndlI, JO,n) 
(16) 

and averaging over  r, 



A. Peskoff et al.: Subsarcolemmal Ca Diffusion 63 

Cm(t ) = C O 
o e  

+ (4IhrDh) ~ .-4 exp(_jZ,nD(t _ to)/a2). Jo,n 
n=l 

(17) 

The falling phase of the curve in Fig. 2 is obtained 
from Eq. (17). Note that the sum in Eq. (17), the 
falling transient, is just the negative of the sum in 
Eq. (14), the rising transient. The shapes of the two 
transients appear to be different only because of the 
logarithmic scale in the figure. 

The conclusion up to this point is that, for the 
case of no sarcolemmal calcium binding sites, we can 
expect calcium concentration at millimolar levels 
while the SR release is occurring. However, upon 
cessation of release, [Ca] falls below 1 /xM in < 15 
msec for the case of slowest diffusion and in < 3 
msec for the case of moderately slowed diffusion 
(Fig. 2). 

TRANSIENT PROBLEMS WITH BINDING SITES 

We now add the Ca binding sites on the sarcolemmal 
surface opposite the SR cistern. We find that the 
addition of these sites significantly slows the build- 
up and decay of [Ca] in the cleft. The previous paper 
(Post & Langer, 1992) demonstrated two classes of 
binding sites. The density of the binding sites is 
derived as follows: our previous studies in cultured 
rat myocardial cells (Langer & Nudd, 1983; Post et 
al., 1988; Post & Langer, 1992) indicated that 1 kg 
wet cells contained 7.5 g sarcolemmal protein and 
the low-affinity sarcolemmal sites have a capacity of 
85 nmol/mg protein. This indicates 6.4 x l0  -4 tool 
Ca bound to sarcolemmal sites/kg cells. Page (1978) 
measures 0.31/xm 2 sarcolemmal membrane per/xm 3 

cell volume. Calculation then indicates a density of 
Ca binding sites of N~ = 2 x 10 -s~ mol/cm 2 if the 
binding sites were uniformly distributed on the sur- 
face of the inner sarcolemmal leaflet. The density of 
the high-affinity sites is -8% of the density of the 
low-affinity sites (7 nmol/mg protein) and would 
therefore have a density o f N  2 = 1.6 x 10 -u  mol/ 
cm 2 if distributed in the same way. The Kd value for 
these two classes are K 1 -= 1.1 mM and K 2 = 13/XM, 
respectively. The number of moles of Ca bound, cb 
mol/cm 2, is assumed to follow a Michaelis-Menten 
relationship 

c b = Ns/(1 + KJc )  + N2/(1 + K2/c ). ( 1 8 )  

The diffusion problem can be treated as being depen- 
dent only on r and t. That is, we neglect the slight z- 
dependence which must occur if the binding sites 
are located on the z = h surface, since there must 

be a gradient in the z-direction to support the Ca flux 
toward or away from the binding sites. This neglect 
is permissible because a >> h. Thus, in the model, 
the Ca source term arising from the Ca bound at 
z = h can be treated as if it were smeared out in the 
z-direction between z = 0 and z = h. The result is 
thus the same as if the sites were distributed uni- 
formly over the volume. The contribution of the 
binding sites, - Ocb/Ot per unit surface area or - 1/ 
h.  OCb/Ot per unit volume, can be simply added to 
-Oc/Ot on the right-hand side of the conservation 
Eq. (8) or (9), so that we have 

(1/r)O(rJ)/Or = -Oc/Ot - (1/h)OCb/Ot + Ihra2h 

(19) 

in place of Eq. (9). 
Using Eqs. (3), (18) and (19), we obtain the diffu- 

sion equation with binding 

D O  r Oc = 1+  
f O r k  Or~ (1+~-~)" 

+ U• I 

where I has the same value used above for 0 < t < 
20 msec and is zero for t > 20 msec. In general, I 
could be an arbitrary function of time, and later we 
will consider the case of a train of square pulses to 
represent a beating cell. Equation (20) is a nonlinear 
equation which cannot be solved in analytic form. 
When analyzing cases for which c ~ K~ or K2 for 
all r and t, Eq. (20) can be linearized and solved 
analytically (Bers & Peskoff, 1991), but in the pres- 
ent case this inequality is not satisfied. In Appendix 
B we describe the numerical method used to solve 
Eq. (20) using Eqs. (B6), (B7), (B8) and (B12). 

Substituting the above values for the physical 
parameters, we have for the dimensionless quanti- 
ties Bs = Ns/Ksh = 180 and B 2 = Nz/K2h = 1,200. 
Physically, B s and B 2 a r e  the number of low- and 
high-affinity binding sites on a differential area, dA,  
divided by the number of Ca ions in the correspond- 
ing differential volume, h dA,  at half-saturation, i.e., 
at [Ca] = Ks and/s respectively. 

Before doing the numerical computation, one 
can anticipate the qualitative effect of the nonlinear 
factor in square brackets multiplying Oc/Ot, which 
represents the effect of binding, and which distin- 
guishes Eq. (20) from Eq. (10a). Its effect is to stretch 
the scale of the time variations. The effective "time 
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Fig. 3. Mean calcium concentration versus  time with one and 
two classes of binding sites present. The calcium concentration, 
averaged over the volume of the restricted space, is plotted as a 
function of time for three values of diffusion coefficient, D. The 
broken curves are for low-affinity binding sites with BI = 
N I / K t h  = 180. The solid curves are for the addition of high- 
affinity binding sites with B z = N z / K z h  = 1,200. Results are 
from a finite-difference numerical solution of Eq. (20). Note the 
difference in time scale compared to Fig. 2. 

constant" at time t will be of the order of ~- in Eq. 
(13) multiplied by the square-bracketed expression 
in Eq. (20) evaluated at c = c,,. 

As a function of c, the factor varies from 1 for 
c>>Kl, t o - B l f o r c - K l ,  t o - ( B  1 + B2) forc-< 
K 2. Solving for the value of c that makes the two 
Michaelis-Menten terms in Eq. (20) equal, yields 

C = [ ( N z / K 2 )  1/2 - ( N I / K I ) I / 2 ] /  

[(N1/K1)l/2/K2 - ( N 2 / K 2 ) I / Z / K I ]  = 21 p~M (21) 

indicating that the effect of low- and high-affinity 
sites on the time constant are of equal magnitudes 
a t c  = 21/ZM. 

The initial rate of decay of [Ca] following the 
20-msec SR Ca release will depend on Cm(tO). For 
example, for cm(to) = K~, we expect initial slopes 
about B~/2 times smaller in magnitude than in Fig. 
2. The slopes will continuously decrease in magni- 
tude as c~,(t) decreases with increasing t. When 
cm = 21 /~M, the slopes, according to Eq. (21), will 
be approximately 2B~ times smaller than the slopes 
at Cm = 21/~M in Fig. 2. Finally, when Cm < K2 they 
will be about B1 + B 2 times smaller. Thus, we can 
expect a dramatic lengthening of the transient decay 
(roughly, between two and three orders of magni- 
tude) caused by the presence of Ca binding sites. 
These expectations are confirmed by the numerical 
results which we now describe. 

In Fig. 3 we show the result of numerical compu- 
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Fig. 4. Mean calcium concentration for repetitive Ca release from 
the SR, for the middle value of the diffusion coefficient, D, and 
both classes of binding sites. SR Ca is released as a train of pulses 
(400/rain), each pulse identical to the pulse in Figs. 2 and 3. 

tation for N1/K~h = 180 and Nz/K2h -- 1,200 and 
the above values for I, a and h. The abscissa is the 
mean calcium concentration, c~ (on a logarithmic 
scale). It is obtained by computing c from the finite- 
difference approximation, Eq. (B 13), and then aver- 
aging over volume, according to the average defined 
in Eq. (7), to obtain cm. The three solid curves repre- 
sent the time dependence of the [Ca] averaged over 
the volume of the cleft, for the same three values of 
the diffusion coefficient illustrated in Fig. 2. The 
dashed curves are the results if only the low-affinity 
sites are present (obtained by setting N2 = 0 in Eqs. 
(20), (B6) and (BI2)). 

The D = 5 • 10 -6 cm2/sec curves nearly reach 
the steady-state value shown in Fig. 2 within the 
20-msec period of current flow. The dashed curve 
reaches a slightly higher peak value because, in the 
absence of high-affinity sites, less Ca is removed 
from the restricted space. The decay of the dashed 
curve is roughly 180 times slower and the decay of 
the solid curve is roughly 1,400 times slower than 
the corresponding curve where no binding sites are 
present (Fig. 2), confirming the qualitative expecta- 
tion stated above. The D = 1 0  - 6  and D = 2 • 10 -7 
cm2/sec curves again have slower time dependences 
than the D = 5 x 10 - 6  cm2/sec curve. None of the 
curves reach the steady-state concentrations of Fig. 
2 because their effective time constants are greater 
than 20 msec, but they remain at high levels for a 
much longer period. For example, at t = 100 msec, 
the mean concentrations in the solid curves are 
about 0.004, 0.07 and 0.4 raM, for the three values 
of the diffusion coefficient. 

Figure 4 shows the result of repetitive release of 
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Fig, 5. Calc ium concentra t ion at six radial dis tances  v e r s u s  time. 
The same case as the middle, broken (low-affinity sites) and solid 
(low- and high-affinity sites) curves  in Fig. 3 but showing the 
radial dependence  of  the calcium concentrat ion.  

the same amount  of Ca from the SR, for four cardiac 
cycles at a heart  rate of  400/min, typical for rat 
ventricle, for the middle value o l d  = 10 .6 cm2/sec. 
To obtain this curve,  for the source term on the 
right-hand side of Eqs. (20), (B6) and (B12) we take 
I =  3.65 x 10 1 7 m o l / s e c f o r 0 < t < 2 0 ,  1 5 0 < t <  
170,300 < t < 320 and 450 < t < 470 msec, and zero 
otherwise. The asymptotic  shape of a single cycle is 
essentially attained in the second cycle. The mean 
concentrat ion is above 0.1 mM for roughly half of 
each cycle. 

Thus far we have illustrated the time depen- 
dence of the mean concentrat ion,  Cm(t). To complete 
the picture, in Fig. 5 we show the time dependence 
of the concentrat ion,  c(r, t), at selected radial dis- 
tances, for the middle value of D = 10 -6 cmZ/sec 
and for N1/Klh = 180, N2/K2h = 0 (dashed), and 
N2/Kzh = 1,200 (solid). The peak value of c at r = 
0 is about double the peak value of Cm in Fig. 3. The 
spatial dependence  of the concentrat ion is relatively 
flat (on this logarithmic scale) for most of  the dis- 
tance out to r = a, with a fairly steep drop to c o = 
10 -4 mM between the last curve at r/a = 0.975 and 
r/a = 1. Figure 6 is a three-dimensional view of the 
solid curves in Fig. 5. 

Discussion 

The most important  consequence of the modeling of 
the Ca profile in the space (cleft) between the surface 
of  the SR cistern and the inner sarcolemmal leaflet 
is the very large effect of the addition of  calcium 

o 101 

104 

0,0 11111  

Fig. 6, Calcium concentra t ion v e r s u s  radial dis tance,  R = r / a ,  

and time. A three-dimensional  plot of  the solid curves  in Fig. 5 
(tow- and high-affinity sites). The spatial dependence  is shown  at 
4-msec increments  for 0 <- t -< 20 msec  and  at 20-msec increments  
for 20 <- t <- 500 msec.  The  time dependence  is shown at radial 
increments  of  0.05. 

binding sites in the inner sarcolemmal leaflet on the 
mean (spatially averaged) concentrat ion of  Ca and 
its t ime-dependent changes. 

In the case of moderate  diffusion restriction 
( O  = 1 X 10 6 cmZ/sec) the addition of only the 
low-affinity (K d = 1.1 mM) sites at the density corre- 
sponding to uniform sarcolemmal distribution (N1/ 
K~h = 180) reduces to about one-half, the maximum 
[Ca] that is attained in the cleft during SR release 
of Ca (Figs. 2 and 3). It is of greater significance, 
however,  that the decay after cessation of  release is 
greatly prolonged. [Ca] falls to 10% of its peak value 
within 2 msec in the absence of inner leaflet binding 
sites (Fig. 2). In their presence > 100 msec is re- 
quired before [Ca] reaches 10% of  its peak value 
(middle solid line in Fig. 3). The addition of the high- 
affinity sites (Kd = 13 /aM) has little effect for the 
first 100 msec of  decay,  during which time mean [Ca] 
is > 0.1 mN, but considerable effect after [Ca] falls 
below - 1 3  ~M (middle curves,  Fig. 3). 

We subsequently modeled the [Ca] profile in the 
cleft in the presence of the calcium binding sites 
for a rat ventricle stimulated at 400 excitat ions/min.  
Steady-state peak value of  the spatially averaged 
[Ca] is achieved by the second beat at - 0 . 6  mM and 
does not fall below 30 /XM during diastole. Obvi- 
ously, at lower rates of  stimulation [Ca] in the cleft 
approaches the diastolic level in the general cyto- 
plasm. 

The results just  described refer to mean [CaJ 
within the cleft. Figure 5 presents the [Ca] at differ- 
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ent radial distances from the center to the periphery 
of the cleft. It is of interest that 100 msec after Ca 
release ceases the [Ca] is still > 30 tXM at a point 
80% of the distance to the outer boundary of the 
cleft. Between this radial distance and the boundary 
there is a decline in [Ca] to 1/xM. This is also shown 
in the three-dimensional plot (Fig. 6). 

The documented presence of the sarcolemmal 
Ca binding sites in the cytoplasmic leaflet of the 
sarcolemma in the amounts measured in cultured 
cells (Post et al., 1988; Post & Langer, 1992) has 
significant physiological implications. Even with an 
amount of Ca released which will produce only 50% 
maximal ventricular force, [Ca] within the cleft rises 
to > 0.6 mM and remains > 20/xM for --200 msec. 
If the sarcolemma at the cleft contains Na-Ca ex- 
changer molecules, the profile of [Ca] in this region 
takes on particular significance. It has been shown 
recently that the Na- -Ca  exchanger molecules are 
concentrated in the part of the s arcolemma facing the 
cleft region (J.S. Frank, personal  communication).  
The Kin(Ca) for the exchanger is in the range of 20 
/XM (Nicoll, Barrios & Philipson, 1991). This means 
that shortly after Ca release through the "feet"  the 
exchanger is activated and remains > 50% activated 
for at least 200 msec after excitation. This indicates 
that net Ca efflux should be demonstrable during the 
course of the action potential and should be closely 
related to intracellular Ca release and its subsarco- 
lemmal concentration. This is exactly what has been 
proposed by Egan et al. (1989) on the basis of mea- 
surements of Na- -Ca  exchange current in guinea- 
pig ventricular cells. The early efflux of Ca during 
the action potential was also demonstrated by Hil- 
gemann (1986). 

The inner leaflet anionic phospholipids may 
have an effect on the Na-Ca exchanger in addition 
to its regulation via [Ca] in the cleft. Philipson and 
Nishimoto (1984) have clearly demonstrated en- 
hancement of exchanger activity (up to 300-400%) 
by the presence of anionic lipid components. Other 
transport systems such as the sarcolemmal Ca pump 
(Carafoli, 1990) and (Ca + Mg) ATPase (Verbist et 
al., 1991) are also significantly stimulated by anionic 
lipids in their environment. 

As discussed above, the model emphasizes the 
important role of the sarcolemmal Ca binding sites 
in cellular Na-Ca exchange. It predicts the existence 
of a subsarcolemmal region where Ca concentration 
is significantly higher than in the cytosol. This cal- 
cium concentration is elevated to or above the K m (20 
tXM) of the exchanger for a few hundred milliseconds 
following depolarization, allowing the exchanger to 
be activated to expel Ca from the cell in the amounts 
measured, over a period of -200 msec. Diffusion in 
a restricted sarcolemmal space, even with a reduced 

diffusion coefficient, is not sufficient to produce the 
sustained elevation of [Ca] required (Fig. 2). To ob- 
tain this, our results indicate that it is necessary that 
the inner sarcolemmal surface facing the restricted 
space contain sites capable of binding Ca (Fig. 3). 
The experimentally demonstrated (Post et al., 1988) 
inner sarcolemmal leaflets phosphatidyl-serine, 
-inositol and -ethanolamine are more than sufficient 
to provide these sites. 

Furthermore, the model also has significant im- 
plications for the process of Ca-induced Ca release. 
Fabiato (1983) proposed that the release is triggered 
by Ca entering the cell via Ca channels and calcu- 
lated that the release is optimal in skinned cells from 
rat ventricle when the trigger pCa = 6.25 ([Ca] = 
5.6 x 10-7M) (Fabiato, 1983). Higher concentrations 
suppress release, with pCa = 5.25 ([Ca] = 5.6 x 
10 -6 M) almost totally suppressing it. Calcium enter- 
ing the cell by means of transsarcolemmal fluxes 
therefore would diffuse to the "feet"  and produce 
Ca-induced Ca release, which would result in a rapid 
increase of [Ca] in the cleft region (Fig. 3) and, there- 
fore, in a rapid (< 2 msec) shutdown of the Ca- 
release channels. Unless the time constant for inacti- 
vation of release were much greater than that for 
activation, little Ca-induced Ca release would occur. 
Such a difference between time constants has, in- 
deed, been proposed by Fabiato (1985). 
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Appendix A 

The initial/boundary-value problem of Eqs. (10a-c) can be trans- 
formed to a homogeneous problem by defining the new variable 

I ( D u(r,t) = c ( r , t ) -  c 0 - ~  1 -~-~ (A1) 

which is the concentration c minus its steady-state (t ~ ~) limit. 
Substituting Eq. (A1) in Eqs. (10a-c) yields 

r Or \ Or/ = 

u(a, t) = 0 (A2) (r2) I 1 -  
u(r, O) - 4~rDh ~ " 

The solution to this problem may be found by the method of 
separation of variables to be (Crank, 1975, p. 73, Eq. 5.18) 

2 exp( _j2 ,Dt/a z) J ~ )  ll(r, t) E a'~l ' air J0 n) 

fO ru(r, O)Jo(JoJ/a)dr. (A3) )< 

J0 and Ji are the zero- and first-order Bessel functions of the first 
kind and J0,n is the n th root of 

Jo(Jo.n) = 0 (A4) 

which is tabulated (Abramowitz & Stegun, 1964, p. 406, Table 
9.5). The integral in Eq. (A3) can be evaluated for the u(r, 0) of 
Eq. (A2). Letting R = r/a and, deleting the subscripts temporar- 
ily, letting j0,, = j ,  yields 

~f f r ( l -~2)  Jo(Jfa)dr= fol(R-R3)jo(jR)dR. (A5) 

With the help of the derivative formulas for Bessel functions 
(Abramowitz & Stegun, 1964, p. 361, formula 9.1.30) 

d •  (RJI(jR)) = jRJo(jR) (A6) 

D (Jo(jR)) = -jJI(jR) (A7) 

and integration by parts, the integral in Eq. (A5) can be evaluated 

f j  RJo(jR)d R Jl(J) - 7 (A8) 

R3JI(jR) i 2__ 1 2 �9 
-- j -- j fo R JI(JR)dR 

; J j[ - j + R2Jo(jR) - 2fo 

1 4 
= I ] - f ] J l ( j )  (A9) 

where we used Jo(J) = 0 to get the last equality. Combining Eqs. 
(A8) and (A9), 

1 4J1(3") 
fo (R - R3)Jo(jR)dR - (A10) j3 
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and Eq. (A3) becomes 

u(r, t) - 21 ~ e x p ( _ j ~ , D t / a 2 ) ~ .  (Al l )  
~rDh ,, = 1 ' Jo,nd lI.Jo,n) 

Substituting Eq. (Al l )  in Eq. (A1) yields Eq. (11). Substituting 
Eq. (11) in Eq. (7), using the integral in Eq. (A8), yields the mean 
concentration, Cm, of Eq. (14). 

Letting v(r, t) = c(r, t) - Co in Eqs. (15a-c), yields 
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D O  (rOV] Ov 
r d r \  Or/ = - ~  

v(a, t) = 0 

v(r, to) = 4 ~  ( 1 -  ~ ) .  (AI2) 

Equation (A12) is identical to Eq. (A2) except for a minus sign and 
the replacement of t = 0 by t = t o in the initial condition. The 
solution for c(r, t) and Cm(t ) are thus as given in Eqs. (16) and (17). 

A p p e n d i x  B 

Equation (20) was solved numerically by finite-difference approx- 
imation of the partial differential equation. Introducing the follow- 
ing variables and parameters: 

R = r /a  

T = D t / a  z 

B 1 = N I / K l h  

B 2 = N z / K z h  

S = (aZ/D)s = 1/7rDh (B1) 

Eq. (20) becomes 

R O R \  O R / =  L (l+K~Cl) 2 (1 --c\ilOT-+-~2)_l 
(B2) 

The discrete variables are defined by 

Rg = iz~R; i = O, 1, 2 . . . . .  L;  A R  = 1/L 

T, = nAT;  n = O, 1 , 2  . . . . .  M 

cy = c(aRi, a2Tn/D). (B3) 

The spatial derivative is replaced by 

( O C )  = 02C + 10c  Cn+l -- 2cn + cn-1 1 0 
R ~  0R 2 ~ O T ~  (AR)2 R aR 

1 c~+l - c f _ l  
q (B4) 

iAR  2 A R  

and the time derivative by 

C n + l  C n 
oc -~ - (BS) 
OT A T  

Substituting Eqs. (B3)-(B5) in (B2) and solving for c~ +1, the 
finite-different equation approximating Eq. (B2) is 

C~ I + l  = C n 

+ ci_ 1 1 - 1  

B1 B2 
lq  - - + - -  

(B6) 

for i = 1, 2, 3 , . . . ,  L - 1. The point i = 0 is treated separately 
below. 

The initial condition of Eq. (10b) becomes 

cO = Co (B7) 

and the boundary condition of Eq. (10c) becomes 

c~ = c 0. (B8) 

By symmetry, 

Oc/OR = 0 a t R  = 0. (B9) 

Using L'Hospital 's rule to evaluate (Oc/OR)/R at R = 0, 

OZc 10c  = 2 0 2 c  a t R = 0  (B10) 
OR---~ + -~-~ oR2 

and placing an extra point at i = - 1 and requiring c ~_ 1 = c~ by 
symmetry, the difference approximation at R = 0 is 

C~2C 10C 2(C~ -- 2C 8 + C'LI) 4(C] ~ -- C~3) 
~R ---~ + R 0-R--' (an) 2 - (aR) ~ (B 11) 

Substituting in Eq. (B2), 

[4AT/(AR)2][c~ - c~] + S A T  
c8 --1 = c~ + (B12) 

B1 B2 
l + - - q  (, 

+ K1/ ~ /  

The computation is done by starting with the initial condition 
c o of Eq. (B7) and then computing c~, c ~ , . .  u �9 c i successively, 
using Eq. (B12) for c 8 and Eq. (B6) for c7, i = 1, 2 . . . . .  L - 
1, and the boundary condition of Eq. (B8) for c~ (which appears 
in the equation for c[_ 1). 

In the computation, AR = 1/40 (L = 40) and AT satisfied 
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AT/(AR) 2 
<0.1 

1 + B J ( 1  + c~/Kl) 2 + B2/(1 + c~/K2) 2 - 
(BI3) 

to avoid instability of the difference equation. Usually, the equal- 
ity in Eq. (B13) was used. However, when c~ is small this leads 
to a ATthat can be too large to follow the time dependence of c. 
When Eq. (B13) yielded a AT > 0.1 D / a  2, we took AT = 0.1 
D / a  2. 
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To compute the mean concentration defined in Eq. (7), we 
used the trapezoidal rule 

2 a 2 fo Rc (aR ,  aZT/D)dR --~ -~  fo rc(r, t)dr = 1 

] 2 (ic']) + Lc~ �9 (ZXR) 2. (B14) 


